

COMMUNICATIONS CIRCUITS

App Note 3556: Configuring Dallas Semiconductor LIUs Without a Microcontroller

This application note describes how to configure Dallas Semiconductor Line Interface Units (LIUs) without adding the extra, and often complex, circuitry of a microcontroller.

Configuration of LIU(s)

It is possible to configure some Dallas Semiconductor Line Interface Units (LIUs) without a microcontroller. These unique LIUs have an extra serial interface (SPI) along with the traditional parallel port. To place the LIU in SPI slave mode, specific LIU pins are floated, pulled to V_{CC} , or grounded. Please see the LIU data sheet for particular pin configurations.

Once the LIU is in serial mode, a PROM can be used to provide the LIU with the specific data needed for configuration. If the data in the PROM is formatted in a defined way, the PROM will act like a controller with a SPI interface in Master Mode.

The PROMs typically used for this type of configuration have an internal address accumulator. It is important that the PROMs have this accumulator feature because the PROM will need to automatically jump to the next available address in the configuration memory. We recommend the Xilinx XC18V00 device family which has byte-wide, nonvolatile memory with an autoincrement address function. These devices are available in 1Mb, 2Mb, and 4Mb densities.

Figure 1 shows the general relationship of the timing for a SPI bus. For this case, all data is clocked into the slave device on the rising edge of SCLK. This feature can be configurable on some devices; please check the device data sheet for details.

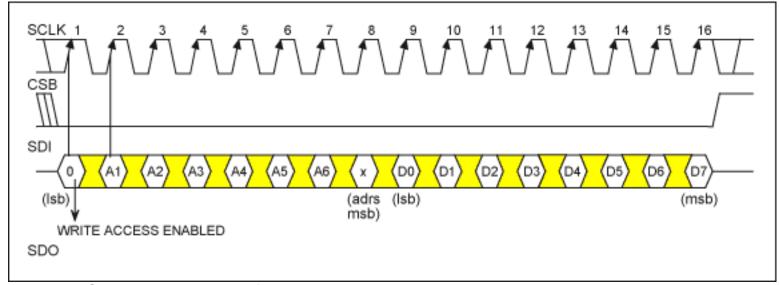


Figure 1. Serial-port operation for write access.

Figure 2 is a simplified diagram of the Xilinx XC18V00 device and a Dallas Semiconductor LIU in SPI mode. Two key points should be noted.

- The CLK for the Xilinx XC18V00 can be the MCLK for the LIU, but the CLK is not the SCLK for the SPI interface. The SCLK can be programmed as needed. Please see **Table** 1 for an example of the memory map.
- 2. The programming for the LIU will begin when OE on the Xilinx XC18V00 goes high. Therefore, one must consider if any delay is necessary in the application. Generally, connecting the OE pin to a powerup delay device is sufficient.

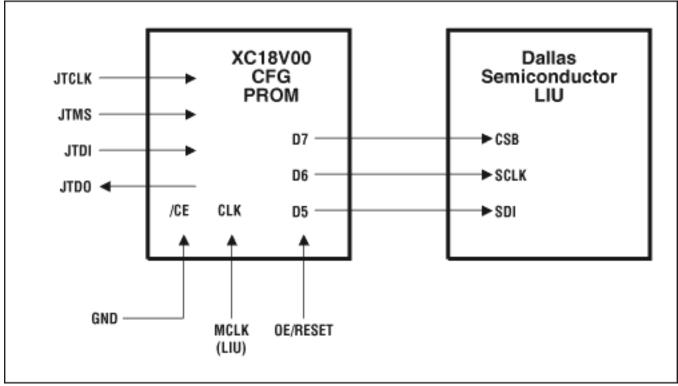


Figure 2. SPI-to-LIU connection diagram.

Table 1. Memory Configuration

Table 1. W	D7	D6	D5		D3	D2	D1	D0
Address	CSB	SCLK	SDI	X	X	X	X	X
0x00	1	0	0	Start o	of Write	e Cycle)	
0x01	0	0	0	•		\		
0x02	0	1	0	Bit A0 (Always a "0" for a write)				write)
0x03	0	0	1	Bit A1				
0x04	0	1	1					
0x05	0	0	0	D:4 A O				
0x06	0	1	0	Bit A2				
0x07	0	0	0	D:4 A O				
80x0	0	1	0	DIL AS	Bit A3			
0x09	0	0	0	Bit A4	D:+ A 4			
0x0A	0	1	0	DIL A4	DIL A4			
0x0B	0	0	0	Bit A5				
0x0C	0	1	0					
0x0D	0	0	0	Bit A6				
0x0E	0	1	0	DIL AU				
0x0F	0	0	0	Bit A7	Rit Δ7			
0x10	0	1	0	Dit / (/				
0x11	0	0	0	Bit D0	Bit D0 (LSB)			
0x12	0	1	0					
0x13	0	0	1	Bit D1				
0x14	0	1	1					
0x15	0	0	1	Bit D2				
0x16	0	1	1					
0x17	0	0	0	Bit D3	Bit D3			
0x18	0	1	0					
0x19	0	0	0	Bit D4	Bit D4			
0x1A	0	1	0					
0x1B	0	0	1	Bit D5	Bit D5			
0x1C	0	1	1					
0x1D	0	0	1	Bit D6				

0x1E	0	1	1		
0x1F	0	0	0	Bit D7	
0x20	0	1	0	DIL D1	
0x21	1	0	Χ	End of Write Cycle	
0x22	1	Χ	Χ	End of Write Cycle	

Configuring LIU(s) for Other Operations By connecting the D5, D6, and D7 pins of the Xilinx XC18V00 device through a switch to the LIU's SDI pin, different loopback configurations can be implemented.

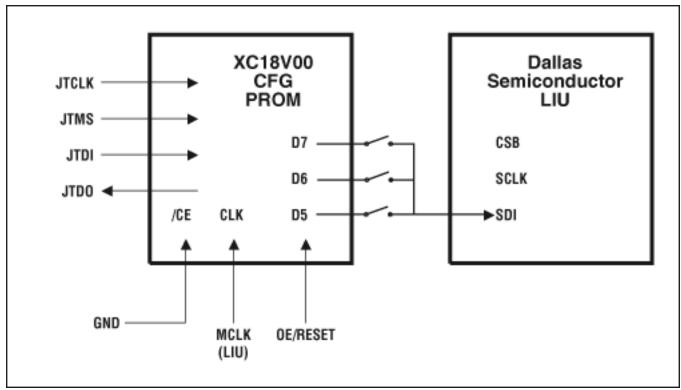


Figure 3. Diagram of an SPI connection which enables loopback.

Conclusion

The Dallas Semiconductor Line Interface Units (LIUs) have different modes of operation that can be implemented without a microcontroller, but instead by using configurable PROM like the Xilinx XC18V00 device family. Modifications to the LIUs should be made based on the customer's needs.

If you have questions about any Dallas Semiconductor telecom products, please contact the Telecom Products applications support team by emailing <u>telecom.support@dalsemi.com</u>, or by calling (01) 972-371-6555.

More Information

```
DS21348: QuickView -- Full (PDF) Data Sheet -- Free Samples
```

DS21448: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2148: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS3150: QuickView -- Full (PDF) Data Sheet

DS3151: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS3152: QuickView -- Full (PDF) Data Sheet

DS3153: QuickView -- Full (PDF) Data Sheet

DS3154: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS3251: QuickView -- Full (PDF) Data Sheet

DS3252: QuickView -- Full (PDF) Data Sheet

DS3253: QuickView -- Full (PDF) Data Sheet

DS3254: QuickView -- Full (PDF) Data Sheet